3=-16t^2+76+23

Simple and best practice solution for 3=-16t^2+76+23 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3=-16t^2+76+23 equation:



3=-16t^2+76+23
We move all terms to the left:
3-(-16t^2+76+23)=0
We get rid of parentheses
16t^2-76-23+3=0
We add all the numbers together, and all the variables
16t^2-96=0
a = 16; b = 0; c = -96;
Δ = b2-4ac
Δ = 02-4·16·(-96)
Δ = 6144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6144}=\sqrt{1024*6}=\sqrt{1024}*\sqrt{6}=32\sqrt{6}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{6}}{2*16}=\frac{0-32\sqrt{6}}{32} =-\frac{32\sqrt{6}}{32} =-\sqrt{6} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{6}}{2*16}=\frac{0+32\sqrt{6}}{32} =\frac{32\sqrt{6}}{32} =\sqrt{6} $

See similar equations:

| 22x-220=990 | | (x+3)-5=-2 | | 11^6x^=38 | | 7^5x^=12 | | 512^5x-1^=(1/8)^-4-x^ | | Y-10=-2(x-10) | | 49^5x+2^=1/7^11-x^= | | X=5y-23 | | 6^2x-6^=36^3x-5^ | | 6z+4=20-2z | | X=5y+39 | | 10x-80=2x-4 | | (-5n+5)(-3n-4)=-15n-20 | | (6y-4)+6y=128 | | 9x+9=6x+78 | | 7x-42=2x+3 | | 21x-1+11x+1+26x+6=180 | | 3c+23=-8 | | (5y+3)+34+(4y+8)=180 | | (2x^2)+2x=16 | | 103-x+103-x+2x=180 | | 2x^2-18x+7=0 | | (9x+4+97)+4x+1=180 | | 2x^2-18x+15=8 | | 2x=2.4+6.4 | | Y=3(-2x+1) | | 720x=1080 | | 1.080x=720 | | 6b-2=37-21b | | x^2-4x-1350=0 | | 2u2+-1u=10 | | 7x-19+8x=-9 |

Equations solver categories